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Abstract

Banking has been identified as one of the effective methods using which memory energy can be

reduced. We propose a novel approach that improves the energy effectiveness of a banked memory

architecture by performing extra computations if doing so makes it unnecessary to reactivate a bank

which is in the low-power operating mode. More specifically, when an access to a bank, which is in

the low-power mode, is to be made, our approach first checks whether the data required from that

bank can be recomputed by using the data that are currently stored in already active banks. If this is

the case, we do not turn on the bank in question, and instead, recalculate the value of the requested

data using the values of the data stored in the active banks. Given the fact that the contribution of the

leakage consumption to overall energy budget keeps increasing, the proposed approach has the potential

of being even more attractive in the future. Our experimental results collected so far clearly show that

this recomputation based approach can reduce energy consumption significantly.
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ABSTRACT
Banking has been identified as one of the effective methods using
which memory energy can be reduced. We propose a novel ap-
proach that improves the energy effectiveness of a banked memory
architecture by performing extra computations if doing so makes
it unnecessary to reactivate a bank which is in the low-power op-
erating mode. More specifically, when an access to a bank, which
is in the low-power mode, is to be made, our approach first checks
whether the data required from that bank can be recomputed by
using the data that are currently stored in already active banks. If
this is the case, we do not turn on the bank in question, and in-
stead, recalculate the value of the requested data using the values
of the data stored in the active banks. Given the fact that the contri-
bution of the leakage consumption to overall energy budget keeps
increasing, the proposed approach has the potential of being even
more attractive in the future. Our experimental results collected so
far clearly show that this recomputation based approach can reduce
energy consumption significantly.

Categories and Subject Descriptors:B.3 [Memory Structures]:
Miscellaneous

General Terms: Experimentation, Management, Algorithms.

Keywords: Energy, memory bank, multiple operating modes.

1. INTRODUCTION
Banking has been identified as one of the effective methods us-

ing which memory energy can be reduced. Two factors contribute
to this: reduced effective capacitance brought by banking as com-
pared to a single monolithic memory and existence of multiple low-
power operating modes that work with banked memories. As a
result, prior research has shown that banking can reduce memory
energy for different types of applications in the context of both em-
bedded and high end computing platforms. Several studies have
also proposed techniques - in hardware and/or software - that help
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Figure 1: An example scenario with four banks. a) Sample code
fragment, b) Data mapping into arrays

increase the effectiveness of low-power operating modes.
This paper builds upon this prior work and proposes a novel

approach that further improves energy effectiveness of a banked
memory architecture by performing extra computations if doing so
makes it unnecessary to reactivate a bank which is in the low-power
operating mode. More specifically, when an access to a bank which
is placed into a low-power mode is to be made, our approach first
checks whether the data required from that bank can be recomputed
by using the data that are currently stored in already active banks.
If this is the case, we do not turn on the bank in question, and in-
stead, recalculate the value of the data using the values of the data
stored in the active banks. Given the fact that the contribution of
leakage consumption to overall energy budget keeps increasing, the
proposed approach has the potential of being even more attractive
in the future.

Figure 1 illustrates the proposed approach using an example.
Consider the code fragment shown in Figure 1(a), which appears
in the body of a loop whose index is i. Let us assume that the
memory system has four banks and, at a particular moment in ex-
ecution, only two of these banks (Bank 0 and Bank 1) are active,
whereas the remaining two (Bank 2 and Bank 3) are put in the low-
power operating mode. Figure 1(b) depicts how the data manipu-
lated by the code fragment in Figure 1(a) are mapped to our banks.
Assuming now that the execution is currently about the touch the
statement marked using ”*”, the first data element to be accessed is
E[i], which is stored in Bank 2. Now, we have two options: either
transition Bank 2 to the active (fully operational) mode and access
E[i] from there or recompute the value of E[i] using arrays B[i+1]
and C[i], which are stored in Bank 0 and Bank 1, respectively. Our
approach chooses the second option if it is beneficial to do so from
the energy perspective.

We implemented the proposed approach and performed experi-
ments with six array-intensive benchmark programs. Our experi-
mental results collected so far clearly show that this recomputation
based approach can reduce energy consumption by about 12.8%
when averaged over all codes in our experimental suite.



Power Dynamic Leakage Resynch.
Mode Energy/Access (nJ) Energy/Bit (fJ) Cost (cycles)
Active 0.294 1.369 0

Power-down - 0.218 2

Table 1: Energy consumptions and resynchronization costs for
our operating modes, given for a bank size of 64KB.

The rest of this paper is organized as follows. Section 2 intro-
duces the banked memory architecture we consider in this work
and discusses the related work on exploiting low-power operating
modes for memory energy saving. Section 3 presents our com-
piler algorithm that implements selective recomputation for energy
saving and explains how it operates using an example. Section 4
presents the data we collected from our experiments. Section 5
concludes the paper and briefly discusses the planned future work.

2. BANKED MEMORY AND RELATED WORK
Our architectural model is based on a multi-bank memory sys-

tem, in which SRAM banks can be placed into low-power modes
independently. More specifically, each memory bank can be in
one of two operating modes: active or power-down (also called
drowsy) at any point during execution. Read/write requests are ser-
viced only in the active mode.

Low-power operating modes are typically implemented by dis-
abling certain parts of the memory chip. In addition to this, the
different implementation techniques such as gated-Vdd [12], ABB-
MTCMOS [10], and dynamic voltage scaling [6] have been utilized
to enable low-power operating modes in SRAM circuits. Conse-
quently, each low-power mode can have a different energy con-
sumption and a different resynchronization cost (i.e., the penalty
of reactivation) from the rest. This reactivation penalty is mainly
due to bringing a low-powered memory bank back to the active
mode. Table 1 shows energy consumption and resynchronization
costs used in our evaluation. The energy consumed during transi-
tion from power-down to active mode is 25.6pJ. One must perform
tradeoff analysis between energy savings and performance penalty
when choosing a low-power mode for an idle bank. The time be-
tween successive accesses to the same memory bank is the main
factor in selecting the most suitable operating mode.

Power management of banked memories have been investigated
from the different angles including hardware, OS, and compiler.
Delaluz et al [3] investigated software and hardware techniques
to exploit the memory mode control capabilities. Using memory
access patterns in embedded systems, [1] proposed an algorithm
to partition on-chip SRAM into multi-banks that can be accessed
independently. Flautner et al [6] used a simple technique to put
cold cache lines into a state preserving low power mode to im-
prove the leakage power consumption. Kim et al [8] extended this
technique for instruction caches. Fan et al [4] presented mem-
ory controller policies for memory architectures with low-power
operating modes. The impact of classical loop optimizations on
energy consumption of banked memories has been evaluated in
[7]. Farrahi et al [5] discussed how a sleep mode can be exploited
for memory partitions. The impact of loop optimizations (loop
splitting and loop distribution) and array placement strategies on
a banked off-chip memory architecture are presented in [2]. Lyuh
and Kim [9] used a compiler directed approach to determine the
operating modes of memory banks after scheduling the memory ac-
cess operations. Panda [11] addressed the problem of incorporating
the application-specific customization of memory bank configura-
tion into behavioral synthesis. In comparison, the work described
in this paper shows that it is possible to further increase energy
savings of a banked memory by using recomputation, on top of the

energy savings coming from exploiting the available low-power op-
erating modes.

3. DETAILS OF OUR APPROACH

3.1 Energy Evaluation Model
In this section, we present the energy model used in this work.

Please note that we tried to keep our model simple and at the high
level for the sake of clarity. Total energy consumption Etotal of an
SRAM-based memory system can be modeled, at a high level of
abstraction, as summation of dynamic, Edynamic, (during access)
and static, Eleakage, (during access and idle periods) components,
in addition to the energy spent during transitions, Etrans, between
operating modes (comprising both dynamic and static energy com-
ponents).

The first component of the equation, Edynamic is directly pro-
portional to the number of accesses, N access, to the memory.
Then, we multiply the number of accesses with the required en-
ergy per memory access, DE access, to determine dynamic en-
ergy consumption, Edynamic. In this model, the energies con-
sumed during memory reads and that during writes are assumed
to be equal.

Edynamic = N access × DE access

On the other hand, the leakage energy consumption, Eleakage,
is proportional to the capacity of the memory system, M size, and
the number of cycles, N cycles, required for the execution of the
application. Since our memory system has two different operating
modes, we need to consider the percentage of the execution time
the memory is in the active mode, P active, and the percentage
of the time during which the memory is in the power-down mode
(1 − P active). Finally, we need to take into account the leakage
energy per bit for each power mode. In our case, they are the leak-
age energy per bit for the active mode, LE active, and the leakage
energy per bit for the power-down mode, LE down. Please note
that this model could easily be modified to capture the systems with
more than one low-power operating modes. The energy equation
for leakage is shown below:

Eleakage = M size × N cycles × ((P active × LE active)

+ (1 − P active) × LE down)

Transition energy, Etrans, is calculated by multiplying the num-
ber of transitions from power-down mode to active mode, N trans,
with the energy consumed per transition, E trans. In addition to
this, the number of cycles required for transition, T cycles, should
be accounted for when computing the leakage energy consumption
(they are captured in N cycles).

Etrans = N trans × E trans

Note that since the memory model used in this paper has multiple
banks, the models for Eleakage and Etrans should be employed for
each bank.

Let us now discuss the benefits and overheads of the recompu-
tation considering the energy model. Recomputation brings ex-
tra computations into consideration. This increases the number of
memory accesses by N access extra (number of extra memory
accesses) and the execution time by N cycles extra (number of
extra execution cycles). Consequently, the overall energy overhead,
E over, is calculated as follows:



E over = N access extra× DE access

+ N cycles extra× LE active

On the other hand, recomputation prevents the banks switching
back and forth between the active and power-down modes. This, in
turn, reduces the number of cycles by N access less (the number
of cycle reduced); the number of transitions from the power-down
to active mode by N trans less (the reduced number of transi-
tions from the power-down to active mode); and significantly in-
creases the percentage of the execution time in which a bank is in
the power-down mode by P gain. As a result, the energy improve-
ment can be determined as follows:

E gain = N trans less × E trans + N access less ×

DE access + P gain × M size × (LE active − LE down)

Based on the above-mentioned formulation, our approach can
save energy if E gain > E over.

3.2 Recomputation
This section briefly discusses our recomputation-based approach

and presents the algorithm used. Our approach targets embedded
applications consisting of loops that manipulate array elements.
Particularly, we assume that all scalar variables are stored in regis-
ters and hence do not play a part in our analysis. Let code C consist
of a series of L loops in which a total of M arrays are manipulated.
Let the loops be denoted by L1, L2, ..., LN , where a loop can be
nested at an arbitrary depth. For example, consider the loop Li

to have a nesting depth of k. The lth loop in this nest is denoted
by Lil

and the lower and upper bounds of this loop are given by
LilS

and LilE
, respectively. Finally, an array reference, as part

of an expression, in this loop nest is denoted by AR
il
(a1, a2...al)

and AL
il
(a1, a2...al) for the right hand side and the left hand side,

respectively, of the expression. The subscript il denotes the loop
number (i) and the depth of the nest l. Let us consider a memory
architecture which has N banks and let the arrays of the given code
be partitioned among these N banks.

Recomputation in our work is defined as the computation of a
previously computed value for an array reference instead of look-
ing up the computed value that is stored in a memory bank. This
process is performed in three main steps. First, possible recompu-
tation opportunities are found in the given application code. Then,
suitable arrays are selected for recomputation based on their per-
formance cost. Total cost of all recomputations must be less than
the total allowable Cost-Overhead TC that is the maximum number
of extra execution cycles allowed. Finally, the code is restructured
by replacing the selected array references with the expression that
computes its value.

Algorithm 1 gives a sketch of our approach. The input to this al-
gorithm is the original code, the mapping of arrays to the memory
banks, and TC . The output is the restructured code. First, the set of
selected elements, S , is set to φ. Each element of this set is a tu-
ple, formed by the array reference, AL

il
(a1, a2...al), that has been

selected for recomputation and the set of array references, L, that
compute the values of the same data space as the array reference.
After that, in lines [5-18], the set S is calculated. To calculate it;
first, for each array reference in the input code, AL

il
(a1, a2...al),

the set L is determined. Then, if the data space accessed by the
reference is a subset of that accessed by L and if the cost is not pro-
hibitive, and finally, if the banks that the reference AL

il
(a1, a2...al)

accesses are OFF and those that L accesses are ON, the new tu-
ple {(AL

il
(a1, a2...al),L} is added to S . Otherwise, the bank ac-

cessed by AL
il
(a1, a2...al) is considered to be ON. Finally, in the

Algorithm 1 Recomputation()

1: Input : Source code, array mapping to banks, and TC

2: Output : Restructured code
3: S = φ
4: Initialize all banks as OFF
5: for all array references AL

il
(a1, a2...al) do

6: L =φ

7: for all j < i and ∃AR
il

(a1, a2...al) do
8: L = L

S

AR
il

(a1, a2...al)

9: end for
10: if DS(AL

il
(a1, a2...al)) ⊂ DS(L) and

Bank(AL
il

(a1, a2...al) = OFF and Bank(L) = ON then
11: if TC > 0 then
12: S = S

S

{AR
il

(a1, a2...al),L}

13: TC = TC - C(T (AR
il

(a1, a2...al)), N(AR
il

(a1, a2...al)))

14: end if
15: else
16: Bank(AL

il
(a1, a2...al) = ON

17: end if
18: end for
19: for each element {AR

il
(a1, a2...al),L} of S do

20: for each element Lj ∈ L do
21: Calculate the loops bounds Lils and Lile for

22: DS(AR
il

(a1, a2...al))
T

DS(Lj)

23: Restructure code using Lils and Lile

24: end for
25: end for

lines [19-25], the code for the each selected array reference is gen-
erated. First, the loop bounds are calculated and then, these bounds
are used to generate the output code.

4. EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of our pro-

posed approach. We used six array-intensive benchmarks from
the Spec and Perfect Club benchmark suites. Each benchmark is
written in C language and comprises the manipulations of one- to
three-dimensional data arrays. The data set sizes of these bench-
marks range from 170KB to 256KB. In our experiments, we used
a single level of SRAM with four data banks, each 64KB, as our
memory architecture. Execution time is a significant factor during
the calculation of leakage energy consumption. Execution time of
each application with/without recomputation is evaluated using an
UltraSPARC-III based system with 750 MHz of clock frequency.
In our experiments with baseline configuration, we found that the
benchmarks incurred around 7% performance degradation on the
average when recomputation is introduced.

Our first set of results is given in Table 2, under the performance
bound of 20% (i.e., we allow up to 20% increase in original exe-
cution cycles). The first column of this table gives the name of the
benchmark. The next two columns are the energy consumptions
without and with the proposed recomputation based approach. The
last column indicates the percentage energy improvements. The
average energy improvement obtained through the recomputation
based approach is about 12.8%. As can be seen in Table 2, the im-
provement is small for the first benchmark bmcm. This is because
the execution time increases almost 20% when recomputation is in-
troduced. This, in turn, increases not only dynamic energy but also
leakage.

In our next set of experiments we kept the total memory size
(capacity) fixed at 256KB and changed the number of banks. Recall
that our experiments shown in Table 2 assume that 4 data banks are
available. Figure 2 shows the normalized energy savings with the
different bank counts. In this case, we focus only on benchmarks
wss and tomcatv. As can be seen from the figure, an increase in the



Benchmark Energy w/o Energy w/ Improvement
Recomp. (mJ) Recomp. (mJ) (%)

bmcm 212 210 0.6
eflux 786 625 20.5
mxm 133 100 24.4

tomcatv 1240 1120 9.8
interp 3050 2830 7.4
wss 1980 1700 13.8

Table 2: Energy consumptions with and without recomputation
for different benchmarks.
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Figure 2: Normalized energy consumptions with different
number of banks for wss and tomcatv.

number of banks improves the normalized energy savings archived
by our recomputation based multibank memory system. This is due
to two main reasons: a) our approach provides an opportunity to
power down a bank, which cannot be powered down in the original
case due to lifetime conflicts between the data arrays that reside in
the bank, and b) our approach makes it possible to keep a bank in
the power down mode for a longer period of time. As expected,
there is no energy improvement for the benchmarks when only two
data banks are available.

Next, we studied the tradeoff between performance and energy.
In other words, we evaluated energy consumptions under differ-
ent recomputation scenarios. Figure 3 plots the normalized energy
consumption values for each scenario for the benchmark tomcatv.
The first bar with 0% performance degradation represents the case
with no recomputation. Each bar after that introduces extra re-
computation over the previous one (i.e., it increases the tolerable
increase in the execution cycles). As can be observed from the fig-
ure, when the amount of recomputation is increased, it is possible
to achieve better energy savings (the cases with 10% and 20% per-
formance degradation bound). However, the case with 40% perfor-
mance degradation bound has a negative effect in energy consump-
tion. The main reason for this is the increase in leakage energy
consumption due to excessive execution time overhead.

5. CONCLUSIONS AND FUTURE WORK
Low-power operating modes have been employed to improve the

energy consumption of banked memory architectures. Reduction in
energy consumption is achieved by putting inactive memory banks
into a low-power operating mode. In this paper, we propose a novel
energy saving scheme based on recomputation to further increase
the energy savings that could be obtained from in multi-bank mem-
ory systems. Basically, when an access to a powered-down bank is
to be made, our approach first checks if it is possible to obtain the
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Figure 3: Normalized energy consumptions with different re-
computation scenarios for tomcatv.

required data by recomputing the data placed in the active banks,
instead of reactivating the powered-down bank and fetching the
data from it. We performed experiments with several benchmarks
and the results collected show the effectiveness of the proposed re-
computation based approach. Our future work involves extending
this idea for multiple low-power operating modes with compiler-
directed recomputation decisions.
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